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Abstract
Production AI agent systems expose a fundamental observabil-
ity mismatch: traditional monitoring assumes deterministic code
with stable interfaces, while agents generate non-deterministic
outputs through rapidly-evolving logic. Current solutions (APM
tools, LLM-centric monitoring, and framework-specific SDKs) cre-
ate fragmented silos that cannot capture semantic reasoning, resist
tampering, or scale across multi-vendor ecosystems. We argue that
agent observability fundamentally requires autonomous intelligence:
LLM-powered observability agents are necessary to interpret semantic
failures, adapt to evolving agent behaviors, and perform cross-layer
causal reasoning at production scale–capabilities that humans and
rule-based systems cannot provide. This paper presents a vision for
unified agentic interfaces through a two-plane architecture: a Data
Plane capturing telemetry at stable system boundaries (syscalls,
network, inference endpoints, human feedback), decoupling ob-
servability from agent internals; and a Cognitive Plane deploy-
ing autonomous observability agents for semantic understanding
at production scale. We identify open research challenges across
system-level capture, semantic reconstruction, and standardization
required to realize this vision.

1 The Agentic Observability Challenge
1.1 The Transformation: From Deterministic Code to

Autonomous Reasoning
AI-powered agentic systems are fundamentally changing how
we build software infrastructure [16, 37]. Frameworks like Auto-
Gen [39], LangChain [8], Claude Code [6], and gemini-cli [28]
orchestrate large language models (LLMs) to autonomously exe-
cute complex workflows, including debugging production incidents,
analyzing multi-modal data pipelines, coordinating distributed de-
ployments, and making real-time operational decisions [35].

Consider a concrete example: an automated code review agent
receives a pull request, analyzes the diff against project style guides,
queries a vector database for similar past bugs, spawns subprocess
tools to run linters and tests, coordinates with a security agent to
check for vulnerabilities, and finally posts structured feedback. This
workflow involves multiple LLM calls, external tool invocations,
inter-agent communication, and persistent state, all orchestrated
autonomously with minimal human intervention.

Yet despite rapid adoption in development environments, pro-
duction deployment at scale faces three fundamental challenges
that expose a critical gap in existing observability paradigms:

Semantic Failures Replace Deterministic Errors. In our
code review example, the agent might hallucinate a security vul-
nerability that doesn’t exist, enter an infinite loop requesting more
context, or forget critical style guidelines mid-review. Unlike tradi-
tional crashes (segfaults, exceptions), these failures are semantic,

meaning they are plausible but incorrect outputs that require under-
standing agent intent to detect. As practitioners observe, building
multi-agent systems without observability “feels like debugging
a black box” where developers are “essentially flying blind” with-
out visibility into decisions and data flows [25, 29]. More critically,
prompt injection attacks [40] can compromise agents to evade their
own logging, hiding malicious behavior. Traditional metrics (CPU,
latency, 5xx errors) cannot capture these failure modes.

Opaque Multi-Layer Costs. The code review workflow incurs
costs at every layer, including token usage for LLM calls, vector
database queries, API calls to GitHub, and subprocess execution for
linters. When agents spawn recursive sub-tasks or enter reasoning
loops, costs can spiral unpredictably. Without unified visibility
across this multi-layer stack, runaway expenses remain invisible
until discovered in post-incident analysis.

Fragmented Multi-Vendor Instrumentation. Our code re-
view agent’s execution spans multiple administrative domains,
including LLM serving (OpenAI API), agent orchestration
(LangChain), vector storage (Pinecone), tool execution (subprocess
calls), and inter-agent communication (customAPIs). Each layer has
its own SDK, logging format, and instrumentation requirements,
creating incompatible telemetry silos. Multi-agent coordination ex-
acerbates costs: production deployments report up to 15ÃŮ higher
token consumption compared to single-agent workflows [5], while
error propagation across agent handoffs creates cascading failures
invisible to per-agent monitoring. When the security agent coordi-
nation fails, debugging requires correlating logs across five different
systems with no unified trace.

1.2 Why Existing Observability Paradigms Cannot Scale
These challenges reveal a fundamental mismatch between agent
systems and existing observability approaches. Table 1 summarizes
how agent observability differs qualitatively from traditional soft-
ware monitoring. Three existing paradigms address parts of this
problem, but none provides a complete solution:

Traditional APM Is Operationally Blind to Semantics.
Classic application performance monitoring (APM) tools like Data-
dog and New Relic excel at detecting infrastructure failures such
as crashes, 5xx errors, memory leaks, and latency spikes. But when
our code review agent hallucinates a non-existent vulnerability, no
error is thrown. CPU and memory remain normal. The only signal
is semantic incorrectness, which requires understanding natural lan-
guage intent and reasoning quality, capabilities APM systems were
never designed to provide.

LLM-CentricMonitoring Stops at theModel Boundary. Ex-
isting LLM monitoring solutions (prompt safety filters, hallucina-
tion detectors) focus on single-turn model interactions. They moni-
tor token generation quality at the inference endpoint. But our code
review workflow involves multi-step reasoning, tool orchestration
(spawning linters), cross-agent coordination (calling the security
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Table 1. Traditional vs. Agentic Observability: A Comparative Framework

Aspect Traditional Observability Agentic Observability

Primary Goal System health & performance Behavioral correctness, safety, & trust
Core Pillars Metrics, Events, Logs, Traces (MELT) [22] MELT + Evaluations + Governance
Nature of Failures Crashes, exceptions, latency spikes “Quiet failures” (hallucinations, flawed

logic, misuse of tools)
System Behavior Deterministic & predictable Non-deterministic & emergent
Key Question “Is the system working?” “Is the system thinking correctly and acting

appropriately?”
Core Unit of Analysis Service/request trace Agent decision path/trajectory graph

agent), and persistent state (vector database lookups). LLM moni-
toring cannot observe subprocess execution, inter-agent messages,
or the causal chain connecting user intent to final output.

LLM Serving Observability Optimizes Infrastructure, Not
Behavior. LLM serving platforms monitor throughput, latency
percentiles, GPU utilization, and SLO compliance, all infrastructure
metrics for the inference layer. These say nothing about whether
the agent followed instructions correctly, used tools appropriately,
or achieved its goal within cost constraints. Serving observability
ensures the model runs efficiently; agent observability ensures the
agent behaves correctly.

1.3 Two Fundamental Gaps
The mismatch between agent systems and existing observability
paradigms creates two critical technical challenges:

The Instrumentation Gap: Agent Code Is Unstable. Re-
turning to our code review agent, suppose it initially uses
subprocess.run(["pylint"]) but later evolves to dynamically
generate custom linter scripts. Application-level instrumentation
(callbacks, middleware) that wraps the original subprocess.run
call becomes obsolete. Worse, if the agent is compromised via
prompt injection [40], it can modify its own logging code to hide
malicious behavior. For example, it could write a bash script with
exploit commands (not logged as harmful file I/O) and then execute
it (appears as a normal tool call). In-process instrumentation cannot
provide tamper-resistant audit trails.

The Semantic Gap: System Events Lack Intent. Conversely,
observing only syscalls and network traffic shows what happened
(process spawned, bytes sent) but not why. When our code review
agent spawns pylint, syscall tracing records execve("pylint",
[...]). But why did the agent run it? What reasoning led
to this decision? Traditional observability frameworks [24, 33]
lack semantic primitives such as attributes like agent.goal,
reasoning.step_id, tool.justification, or anomaly detectors
for semantic failures (contradictions, persona drift, instruction for-
getting).

These gaps are complementary: application instrumentation
provides semantics but is fragile and tamperable; system-boundary
tracing is stable and tamper-resistant but semantically opaque. A
complete solution must bridge both.

2 Current Solutions: A Fragmented Landscape
Having established the unique challenges of agent observability,
we now survey existing solutions. Our analysis reveals a maturing
ecosystem converging toward OpenTelemetry standards [9, 23],

yet fundamentally limited by reliance on application-layer instru-
mentation that cannot address the instrumentation and semantic
gaps.

2.1 Methodology: Ecosystem Survey
We surveyed agentic observability tooling as of early 2025, examin-
ing both industrial deployments and academic research. Our analy-
sis covers two areas: (1) Industrial tools, which are production-
ready solutions providing SDKs, proxies, or specifications for agent
framework integration (Table 2), and (2) Academic research,
which includes foundational work on agent monitoring, inter-
pretability, and evaluation that informs current tooling design.

2.2 Key Findings: The Limits of Current Approaches
Industrial Tools. Analysis of 18 production systems (Table 2) re-
veals critical limitations: all tools require application-level instru-
mentation, creating maintenance burden and tampering vulnera-
bilities; despite OpenTelemetry adoption by five tools [23], agent-
specific attributes remain unstandardized; while tools like TruLens
and Arize Phoenix provide LLM-powered evaluation, none explain
why decisions were made through reasoning trace reconstruction;
and no tool observes kernel syscalls, TLS payloads, or subprocess
execution directly.

Academic Research. Four research threads address comple-
mentary aspects: agent monitoring frameworks [12, 32] focus on
trajectory logging but assume instrumented runtimes; mechanis-
tic interpretability [19] reveals model internal reasoning through
attention analysis; evaluation methodologies [27] develop seman-
tic correctness metrics but operate on logged outputs rather than
system-boundary telemetry; and system-level observability [41]
using eBPF to capture kernel events and TLS payloads, though
this approach only observes post-hoc without real-time interven-
tion, lacks standardized schemas for multi-agent coordination, and
cannot observe ML inference stack internals.

These findings reflect a deeper problem: existing approaches in-
herit design assumptions from two incompatible paradigms, neither
suited for production agentic systems.

2.3 Redefining Agent Observability for Production
Systems

Current approaches define observability narrowly, missing critical
production requirements. Academic definitions focus on individual
agent internal consistency (beliefs, intentions, actions) but ignore
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# Tool / SDK (year) Integration path What it provides License / model Notes

1 LangSmith [20] (2023) Add import langsmith
to LangChain/LangGraph
apps

Request/response traces, prompt
& token stats, evaluations

SaaS, free tier Tight LangChain integration;
OTel export beta

2 Helicone [17] (2023) Reverse-proxy or
Python/JS SDK

Logs OpenAI-style calls, cost/la-
tency dashboards

OSS (MIT) + hosted Proxymodel requires no code
changes

3 Traceloop [34] (2024) One-line SDK import âĘŠ
OTel

OTel spans for prompts, tools,
sub-calls

SaaS, free tier Standard OTel data compati-
bility

4 Arize Phoenix [3] (2024) pip install, OpenInfer-
ence tracer

Local UI + vector store for traces,
automatic evals

Apache-2.0 Includes open-source UI for
debugging

5 Langfuse [21] (2024) SDK or OTel OTLP Nested traces, cost metrics,
prompt management

OSS (MIT) + cloud Popular for RAG/multi-agent
projects

6 WhyLabs LangKit [38]
(2023)

Text metrics wrapper Drift, toxicity, sentiment, PII de-
tection

Apache-2.0 core Focuses on text-quality met-
rics

7 PromptLayer [31] (2022) Decorator or proxy Prompt chain timeline, diff & re-
play

SaaS Early solution, minimal code
changes

8 Literal AI [4] (2024) Python SDK + UI RAG-aware traces, eval experi-
ments

OSS + SaaS Targets chatbot product
teams

9 W&B Weave/Traces [7]
(2024)

import weave or SDK Links to W&B projects, captures
code/IO

SaaS Integrates with existing
W&B workflows

10 Honeycomb Gen-
AI [18] (2024)

Send OTel spans Heat-maps on prompt spans, la-
tency

SaaS Built on mature trace store

11 OTel GenAI Conv. [9]
(2024)

Spec + Python lib Standard span names for model-
s/agents

Apache-2.0 Provides semantic conven-
tions

12 OpenInference [2]
(2023)

Tracer wrapper JSON schema for traces Apache-2.0 Specification (not hosted ser-
vice)

13 AgentOps [1] (2024) Proxy injection into LLM
calls

Time-travel debugging, multi-
framework support (CrewAI,
AutoGen)

OSS Session replay across agent
frameworks

14 TruLens [36] (2024) Wrapper (TruLlama) or
SDK

Multi-turn session tracking, cus-
tom feedback functions

OSS + hosted Evaluation-focused with
feedback loops

15 Phospho [30] (2024) Log ingestion API Clustering/labeling of LLM out-
puts, anomaly detection

OSS Post-hoc NLP analytics on
collected data

16 MLflow [11] (2024) mlflow.autolog() for
LLMs

Experiment tracking, artifact log-
ging (prompts/outputs)

Apache-2.0 General MLOps extended to
generative AI

17 Maxim AI [26] (2024) One-line SDK integration Agent trajectory visualization,
cost/latency analytics

SaaS Polished dashboard for pro-
duction monitoring

18 Guardrails.AI [15]
(2023)

Input/output validators Real-time safety checks (toxicity,
PII), auto-retry on violations

OSS (Apache-2.0) Observability through safety
enforcement

system-level concerns like multi-layer costs and multi-agent coor-
dination. Industrial tools provide model-centric input/output analy-
sis, capturing inference-level telemetry but missing tool execution,
inter-agent communication, and cross-layer causality. Production
deployment demands system-level, multi-agent observability ad-
dressing cost transparency across all layers, tamper-resistant audit
trails, multi-agent coordination visibility, and unified causal graphs
linking intent to execution. This reveals why current solutions are
inadequate: they optimize for single-agent, single-layer monitoring
while production requires multi-agent, multi-layer, system-centric
observability.

The Path Forward. Achieving production-grade agentic ob-
servability demands resolving two architectural tensions: (1)Where
to capture telemetry? Application instrumentation is semantically
rich but fragile and tamperable; system boundaries are stable and
tamper-resistant but semantically opaque. (2) Who analyzes teleme-
try? Human operators understand intent but cannot scale to mil-
lions of events; rule-based systems scale but cannot interpret se-
mantic failures. A complete solution must bridge both gaps si-
multaneously: capturing at stable interfaces while analyzing with
autonomous intelligence. We now present a vision for such an
architecture.

3 A Two-Plane Architecture for Agent
Observability

Production agent deployment exhibits three characteristics mak-
ing traditional observability infeasible: heterogeneity (execution
spans multiple administrative domains including LLM providers,
agent frameworks, runtimes, and third-party tools, each with in-
compatible SDKs, making application-level coordination untenable),
dynamism (agents modify their own logic continuously through

prompt evolution, dynamic tool synthesis, and runtime feedback,
making static instrumentation obsolete within days while enabling
self-modification to bypass logging), and scale (thousands of agents
generate millions of semantically-rich events per hour, creating a
cognitive gap between raw telemetry and actionable insight that ex-
ceeds human capacity). These characteristics create two inescapable
requirements:

Requirement 1 (from heterogeneity and dynamism): Observabil-
ity must decouple from application internals, capturing telemetry
at stable system boundaries that remain invariant across vendor
changes, framework updates, and agent self-modification. This ne-
cessitates a Data Plane providing zero-instrumentation capture at
kernel, network, and TLS interfaces, creating a unified foundation
independent of agent implementation details.

Requirement 2 (from scale and semantics): Understanding agent
behavior at production scale requires autonomous intelligence, in-
cluding systems that interpret natural language prompts, correlate
multi-layer telemetry, infer causal relationships, and adapt to evolv-
ing agent behaviors. Only LLM-powered systems can bridge the
semantic gap between raw syscalls and agent intent. This neces-
sitates a Cognitive Plane where specialized observability agents
monitor, diagnose, and remediate other agents.

Critically, these planes are interdependent. The Data Plane pro-
vides tamper-resistant, unified telemetry that the Cognitive Plane
requires for trustworthy analysis. The Cognitive Plane provides se-
mantic understanding that makes Data Plane events actionable. Nei-
ther can function effectively alone. They form an integrated archi-
tecture where system-boundary capture enables intelligent under-
standing, and intelligent understanding validates system-boundary
events. We now detail each plane’s design.
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3.1 The Data Plane: Unified, Zero-Instrumentation
Telemetry Capture

The Data Plane addresses Requirement 1 by capturing telemetry
at stable system boundaries that remain invariant despite hetero-
geneous frameworks, dynamic agent evolution, and multi-vendor
fragmentation.

Building on the AgentOps taxonomy [12] that identifies key
artifacts requiring observability (goals, plans, tool outputs), we
extend this to system-level boundaries. The Data Plane captures
telemetry at stable OS/hardware boundaries (syscalls, TLS pro-
tocols, GPU APIs) that evolve slowly under vendor guarantees,
avoiding the brittleness of application code that changes contin-
uously. Zero-instrumentation design eliminates SDK imports and
code modifications, making observability independent of agent im-
plementation.1 Capture operates at kernel/hardware level where
compromised agents cannot falsify telemetry, while programmable
interfaces enable custom filters and correlation without system
restarts. This design maintains low performance impact through
zero-copy data paths while capturing semantically rich telemetry
beyond traditional metrics: natural language prompts, reasoning
traces, tool arguments, and causal relationships. The Data Plane
organizes capture into four hierarchical layers:

Model Layer : Captures GPU/CPUmetrics, framework hooks, and
model internals through mechanistic interpretability [19] (attention
patterns, layer activations), bridging infrastructure monitoring and
semantic transparency.

Network Layer : Captures TLS-encrypted traffic between agents
and external services using programmable interfaces like eBPF [42]
to intercept prompts, reasoning traces, and API responses without
proxies or SDK modifications.

System Layer : Captures kernel syscalls revealing tool execution,
file access, and resource consumption through eBPF tracing [13, 14],
providing tamper-resistant visibility into agent actions.

Human Layer: Captures human feedback, corrections, and in-
terventions alongside agent responses, providing ground truth for
evaluation and closing the observability loop.

Correlating events from heterogeneous sources into unified
causal traces remains a key challenge. While AgentSight [41]
demonstrates eBPF-based boundary tracing, system-level observ-
ability alone cannot observe model internals, enable real-time in-
tervention, or attribute events in multi-agent scenarios. The Data
Plane addresses these limitations through architectural unification
across four complementary layers, bridging model-internal rea-
soning, semantic intent, system execution, and human oversight.
This delivers framework neutrality, tamper resistance, cost trans-
parency across layers, and multi-vendor compatibility. However,
raw telemetry alone cannot explain why decisions were made or
identify anomalous behavior, necessitating the Cognitive Plane.

3.2 The Cognitive Plane: Why Only Agents Can Observe
Agents

TheData Plane provides comprehensive, tamper-resistant telemetry.
But raw events such as execve("pylint"), TLS payload contain-
ing prompt text, or 5000 tokens consumed cannot answer critical
questions: Why this decision? Is this behavior anomalous? How
1While frameworks like LlamaIndex offer "one-click" SDK integration (e.g.,
set_global_handler("arize_phoenix")), these still require modifying agent code-
bases and remain vulnerable to tampering. The Data Plane’s zero-instrumentation
approach eliminates this dependency entirely.

should we respond? Bridging telemetry to actionable insight re-
quires intelligence. Building on Watson’s concept of cognitive ob-
servability [32] and recent work on agentic interpretability [19], we
argue that only autonomous, LLM-powered systems can provide
this intelligence at production scale, for three fundamental reasons:

First, semantic failures require semantic understanding. Agent
failures are not crashes but semantic incorrectness in natural lan-
guage outputs. Detecting hallucinations or reasoning flaws requires
understanding context-dependent correctness that rule-based sys-
tems cannot provide. Watson’s cognitive observability [32] demon-
strates how observability agents can retroactively infer reasoning
traces, reconstructing why agents made specific decisions.

Second, dynamic evolution demands continuous learning. Agent
behaviors evolve continuously as prompts change and new tools
emerge. Static rulesets become obsolete within days. Observabil-
ity agents learn from historical incidents, continuously updating
their models of normalcy as production agents evolve, ensuring
observability evolves as fast as the agents it monitors.

Third, multi-layer causal reasoning exceeds human capacity. Un-
derstanding failures requires correlating evidence across layers: a
cost spike may trace to a reasoning loop caused by a database time-
out from a network partition. Reconstructing such causal chains
from millions of events demands hypothesis generation, cross-layer
correlation, and counterfactual reasoning that humans cannot per-
form at scale but are natural for LLM-powered diagnoser agents.

The two-plane design enforces strict separation across three
dimensions: trust boundaries (Data Plane operates at privileged
system layers inaccessible to production agents, preventing compro-
mised agents from falsifying observability data), technology stacks
(Data Plane requires low-level systems programming while Cogni-
tive Plane requires LLM orchestration), and evolution rates (Data
Plane interfaces evolve slowly with OS stability while Cognitive
Plane adapts rapidly to changing agent behaviors). The planes form
an inseparable architecture where system-boundary capture pro-
vides trusted telemetry while autonomous intelligence transforms
it into actionable insights.

4 Open Research Challenges
The Data Plane faces challenges in correlating heterogeneous
telemetry (GPU metrics, TLS payloads, syscalls, human feedback)
across boundaries, ensuring tamper resistance through authenti-
cated streams, and balancing privacy compliance with observability
needs.

The Cognitive Plane must bridge low-level telemetry to high-
level intent through causal inference, adaptive anomaly detec-
tion as agents evolve, probabilistic root-cause analysis for non-
deterministic failures, and hierarchical evaluation across session
boundaries.

Integration and standardization challenges include extending
OpenTelemetry’s GenAI conventions [9, 10] with agent-specific
semantics (goals, reasoning steps, multi-agent coordination), devel-
oping evaluation frameworks with ground-truth failure datasets,
and securing cross-organization telemetry sharing.
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